
Determinants of quality, latency, and amount of
Stack Overflow answers about recent Android APIs

David Kavaler1*, Vladimir Filkov1

1 Department of Computer Science, University of California at Davis, Davis, California,
United States of America

* dmkavaler@ucdavis.edu

Abstract

Stack Overflow is a popular crowdsourced question and answer website for
programming-related issues. It is an invaluable resource for software developers; on
average, questions posted there get answered in minutes to an hour. Questions about
well established topics, e.g., the coercion operator in C++, or the difference between
canonical and class names in Java, get asked often in one form or another, and answered
very quickly. On the other hand, questions on previously unseen or niche topics take a
while to get a good answer. This is particularly the case with questions about current
updates to or the introduction of new application programming interfaces (APIs). In a
hyper-competitive online market, getting good answers to current programming
questions sooner could increase the chances of an app getting released and used. So, can
developers anyhow, e.g., hasten the speed to good answers to questions about new APIs?

Here, we empirically study Stack Overflow questions pertaining to new Android
APIs and their associated answers. We contrast the interest in these questions, their
answer quality, and timeliness of their answers to questions about old APIs. We find
that Stack Overflow answerers in general prioritize with respect to currentness:
questions about new APIs do get more answers, but good quality answers take longer.
We also find that incentives in terms of question bounties, if used appropriately, can
significantly shorten the time and increase answer quality. Interestingly, no
operationalization of bounty amount shows significance in our models.

In practice, our findings confirm the value of bounties in enhancing expert
participation. In addition, they show that the Stack Overflow style of crowdsourcing, for
all its glory in providing answers about established programming knowledge, is less
effective with new API questions.

Introduction 1

The social coding movement and the phenomenon of crowdsourcing have made 2

eminently useful software development resources and services available at low cost. The 3

Stack Overflow question and answer site and various Open Source Software forges, like 4

GitHub, are transformative resources; they enable the creation, promulgation, and 5

archiving of new knowledge and artifacts on an as-needed basis. They are often also 6

very responsive: most questions on Stack Overflow are answered within minutes, and 7

pull requests get reviewed, merged, and released into the codebase of large projects 8

within days. In fact, Stack Overflow and Open Source work quite well as a coupled, 9

PLOS 1/28

interdependent system, with the former providing almost instantaneous documentation 10

for the latter, and developers of the latter serving as askers and answerers in the 11

former’s gift economy. This system is critically predicated on both a short turnaround 12

time and the existence of enough knowledgeable users to provide needed expertise. As 13

soon as one or both of those conditions are unmet, the programming and 14

documentation resources get decoupled. 15

On Stack Overflow, users are accustomed to having their questions answered rapidly; 16

according to Vasilescu et al., the mean time to an answer is between 17 and 47 minutes, 17

depending on subject area [1]. In addition, users want high quality answers, i.e., 18

answers that address the core of their question, which may additionally address related 19

concerns not explicitly put forth by the original asker. It has been shown that Stack 20

Overflow is effective for code reviews and conceptual questions [2], as well as providing 21

adequate API coverage [3]. However, many questions are asked which don’t get fast 22

enough attention from the crowd [3]. In addition, though work has been done to reduce 23

the number of low-quality posts on Stack Overflow [4,5], issues regarding answer quality 24

and timeliness still remain for important classes of questions. 25

In particular, we noticed a stark delay in getting good answers to questions related 26

to recently introduced Android APIs; or, “new APIs”. We define an API as being “new” 27

if it has not been modified between the time of its introduction and the time the 28

question mentioning it is asked. Our data shows that questions referencing new APIs 29

are answered, on average, 8,000 minutes (about 5.5 days) slower than questions 30

referencing only old APIs. That is a very large difference in practice, especially in the 31

hyper-competitive markets of Android apps and modern software engineering 32

automation technologies, like continuous deployment. How are questions and answers 33

about new APIs different than those about old ones, in terms of length, quality, 34

incentives, etc..? And, more importantly, can question askers do anything to hasten 35

adequate answers? 36

Motivated by the above, here we are interested primarily in identifying the effects of 37

new API mentions in Stack Overflow questions on three outcomes of interest, which are 38

important in practice: the time to a first good answer, the number of answers, and the 39

answer quality. To study these outcomes, we fused data from two sources: Stack 40

Overflow and the Google Play store. From the latter we gathered function invocation 41

data on 20, 014 Android apps, and from the former we gathered questions and answers 42

that mention Android APIs used in those apps. We then built separate regression 43

models for time to a first good answer, number of answers, and answer quality as 44

functions of question attributes, bounty usage, and many confounding variables. Our 45

findings show that: 46

• Questions involving new Android APIs attract more answers over the question’s 47

lifetime compared to those questions involving older APIs. 48

• Questions involving new APIs receive good answers more slowly within the first 2 49

days. After 2 days, new APIs attract faster answers. Among questions answered 50

after 2 days, only 46% are answered within 1 month. 51

• Adding a bounty not only reduces time to answer on average, but also flattens the 52

long tail and increases density towards faster answers. Bountied questions also 53

receive more answers. However, the exact reputation value of the bounty does not 54

seem to matter. 55

• Answers that come during a bounty period are of higher quality. Questions 56

referencing new APIs have no significant effect in receiving higher quality answers. 57

In what follows, we first discuss background and our research questions, followed by 58

related work, data, methodology, results, discussion, threats to validity, and conclusions. 59

PLOS 2/28

Background and research questions 60

In this work we are interested in the popular Android ecosystem. Android is an 61

open-source, Linux-based software system, used usually on mobile devices. It is built 62

around the Android operating system (OS) developed and updated regularly by Google. 63

The Android OS can be interfaced using the Dalvik virtual machine through Java-based 64

application programming interfaces (APIs); more commonly called the Android API. 65

Android gets updated by Google regularly with new features, which can be accessed 66

through new versions of old APIs or completely new APIs. To provide backwards 67

compatibility and to allow developers to specify what version(s) of the API their 68

particular application targets, the Android API is split into levels, corresponding to API 69

versions. For example, a device running Android version 4.0.3 can support up to API 70

level 15, i.e., it can run applications which target API levels from 1− 15. 71

The Android framework presents a unique opportunity that other OSS app 72

ecosystems do not: the availability to download many real applications. Namely, the 73

Google Play store (https://play.google.com) has a multitude of free Android 74

applications that are open for download. These applications can be simply converted 75

into a reliable byte code format, revealing exactly which Android APIs are called by a 76

given application (described further in Data) with high reliability. 77

Modern software developers use Stack Overflow and related social coding sites 78

extensively [1, 6, 7]. Thus, it is important that Stack Overflow meets both the needs and 79

expectations of its users – fast, high quality answers, with multiple perspectives (i.e., 80

more answers for a given question). Because of the popularity of mobile apps and the 81

low cost of entry in the developer markets, Android use is growing among developers. 82

Due to constant updates to the Android OS and the introduction of new APIs, Android 83

questions on Stack Overflow are extremely popular and occupy a significant fraction of 84

all questions there; as of this writing, Android is the 5th most popular topic. Fast, high 85

quality answers, especially about new APIs, are thus important for productivity and to, 86

e.g., maintain relevancy of software with respect to current demand; else, applications 87

may fall to the wayside. 88

The need for timely, quality answers is addressed on Stack Overflow via different 89

mechanisms. E.g., users can choose to place a bounty on a question after the question is 90

2 days old. A bounty is an extra reputation point bonus applied to a question, funded 91

by the bounty creator’s own reputation score. The bounty creator can choose to spend 92

between 50 and 500 reputation (in accordance to various rules) on a bounty. The ability 93

to attach a bounty to a question requires some amount of participation in Stack 94

Overflow (i.e., a total of 75 reputation). The predominant function of the bounty 95

system is to attract extra attention to a question. Questions with active bounties are 96

put into a special “featured” section in the main Stack Overflow question list, granting 97

them increased visibility. 98

The public availability of Google Play and Stack Overflow data enable us to link the 99

introduction and use of APIs in Android apps (as revealed from their byte code) to 100

questions asked about particular APIs on Stack Overflow. We use this linked resource 101

to study the differences in answers about new, vs. old, APIs, and the role of bounty 102

incentives. 103

Research questions 104

We sought to model the differences in answer latency, quality, and quantity between 105

Stack Overflow questions referencing new versus old APIs. New APIs, by definition, 106

have no existing crowd documentation for users to rely upon. Specifically, there are 107

fewer Stack Overflow questions or answers regarding the proper usage of new APIs than 108

older APIs, on average. In addition, new APIs may not be as well documented, as their 109

PLOS 3/28

https://play.google.com

creators have not had the chance to receive feedback from general users to indicate 110

aspects which require clarification. Further, there are fewer users knowledgeable about 111

new APIs (as they are new), which may increase the proportion of slower or lower 112

quality answers to such questions. In addition, we want to account for confounds that 113

differentiate any two questions, like question quality, length, descriptiveness of the title, 114

and similar characteristics which are visually apparent to readers. 115

Research Question 1: Given that an API referenced in a question is either a new
one or an old one, which, if any, among a number of observable characteristics of
the question are determinants of the answer quantity, quality, and latency?

Bounties can be seen as a layer on top of the old Stack Overflow knowledge exchange 116

system which allows a user to “pay” with reputation points for additional services on 117

top of the basic, public ones. Though research on the effects of the bounty exists, it is 118

still unclear exactly what (if any) is the outcome of the bounty offering. Some potential 119

outcomes are: increased quality of answers, reduced time until a quality answer, 120

attracting people who can answer difficult questions better or faster, etc. But are any of 121

these potential outcomes realized, when controlling for the effect of API newness? 122

Research Question 2: Are bounties associated with more, faster, or higher quality
answers, when controlling for the presence of new APIs?

Related work 123

Prior work related to this research falls mainly into three areas: the usefulness of Stack 124

Overflow for software engineers as a development resource; work on Stack Overflow 125

Q&A quality and latency; and work regarding the mechanisms provided by Stack 126

Overflow in order to incentivize participation and thus increase answer count, speed, 127

and quality. 128

Stack Overflow as a development resource 129

Stack Overflow has been used as a subject of study by many researchers in software 130

engineering. Treude et al. developed a taxonomy of question types, and categorized 131

questions based on this taxonomy [2]. In addition, they discussed which types of 132

questions receive more answers. Other researchers have discussed how developers use 133

social media sites (such as Stack Overflow) as part of their normal workflow [6] to ask a 134

wide variety of questions [8]; many tools have been developed to aid in this 135

process [9, 10]. 136

Much work exists that examines the usefulness of Stack Overflow as a resource to 137

aid the development process. Parnin et al. found that when performing Google searches 138

of the API methods in jQuery, 84.4% of API methods had a Stack Overflow post 139

returned on the first page of the Google search [11]. In addition, highly used APIs are 140

also generally discussed more [12]. But, many articles and questions get asked which 141

don’t get fast enough attention from the crowd [3]. Although Jiau and Yang argue that 142

more obscure questions benefit from a “trickle-down” effect from similar questions [13], 143

some questions are more time-critical and may need an answer even faster. 144

Stack Overflow Q&A quality and latency 145

Closely related to our work are studies on analyzing question and answer quality on 146

Stack Overflow, and predicting the best answers for particular questions. Ponzanelli et 147

al. examined the existing review queue system on Stack Overflow for automatically 148

PLOS 4/28

detected “low quality” posts, providing suggestions and alterations to reduce the queue 149

size and increase its identification accuracy [4]. Dalip et al. used user feedback in order 150

to provide suggestions as to how to reduce the number of low-quality posts on Stack 151

Overflow [5]. 152

Baltadzhieva and Chrupala surveyed various metrics from prior work in determining 153

Stack Overflow question quality, including tags and terms within the question itself [14]. 154

Tian et al. use answer acceptance as a proxy for measuring a “good” answer [15]. 155

Similarly, Shah and Pomerantz examined the Yahoo! Answers data set and used human 156

assessments through Amazon Mechanical Turk to build a model for predicting which 157

answer would be chosen as best by the question asker [16]. In our analysis of the data, 158

we found that very few answers are actually designated as “accepted”, even though the 159

answer quality might in fact be quite high. In addition, as noted by Gantayat et al. [17], 160

often the accepted answer is not the best according to community popular vote. Thus, 161

using the accepted answer as an indicator of answer quality may not accomplish what is 162

intended. 163

To study the effects of new APIs on answer quality, we require a method for labeling 164

post quality; this comes down to answering the question: what makes a post “good”? In 165

our work, we create post quality labels based on work by Ravi et al. [18]. Ravi et al. 166

address issues of conflating quality with popularity, as a question that is viewed many 167

times has more chances to get votes. Through theoretical arguments and some empirical 168

analysis, they decide to consider the quantity pi = si/vi, where si is the score for 169

question qi and vi is the view count. Here, the view count acts as a control for 170

popularity. They go on to argue for labeling questions with pi = 0 as “bad”, and 171

labeling questions with pi > 0.001 as “good”. We use this labeling strategy in our work. 172

Other researchers have studied the topic of answer speed [19–21] in community 173

question and answer sites, with varying degrees of success using a variety of 174

methodologies. Here, in contrast to most prior work, we are interested only in questions 175

and answers related to Android – that can be linked to Android APIs – and use a 176

standard regression framework for inference. Linares-Vásquez et al. [22] found that 177

Android API behavior modifications trigger much discussion on Stack Overflow, 178

indicating that there is interest within the community regarding new or changed 179

Android APIs, meaning our restriction to studying only Android APIs should not be 180

debilitating. However, we note that our focus on Android alone may affect 181

generalizability to other domains. 182

Incentivizing Stack Overflow users 183

Stack Overflow has implemented a number of incentive mechanisms to encourage user 184

participation, including badges (which serve as rewards for achieving various feats), 185

reputation (gained through participation), and various privileges awarded upon reaching 186

reputation milestones. Reputation on Stack Overflow is gained through various 187

methods, primarily by receiving up votes on questions and answers and by having an 188

answer being marked as “accepted”, indicating that the asker “received an answer that 189

worked for him or her personally” 190

(https://stackoverflow.com/help/accepted-answer). These incentive mechanisms 191

have proven to be effective in garnering activity and popularity [23,24]. 192

Movshovitz-Attias et al. found that high reputation users are the primary source of 193

high quality answers [25]. Grant and Betts examined three specific Stack Overflow 194

badges in detail, finding that users tend to increase their activity in order to attain 195

these badges [26]. 196

However, it has been noted that Stack Overflow’s incentive mechanisms can be at 197

odds with question and answer quality. Jin et al. studied gamification-influenced 198

member tendencies on Stack Overflow, arguing that the fastest response often “wins” 199

PLOS 5/28

https://stackoverflow.com/help/accepted-answer

the most reward [27]. Bosu et al. studied exactly what actions a user can take to build 200

reputation quickly [28], concurring with Jin et al., finding that a number of 201

non-expertise related strategies can effectively increase reputation (e.g., activity during 202

off-peak hours). In addition, there have been discussions about declining quality due to 203

the emergence of an “old boys’ club” mentality [29], and the existence of “one-day flies”; 204

the vast majority of Stack Overflow users only post once [30]. Posnett et al. found 205

evidence that users on Stack Exchange (the umbrella under which Stack Overflow lies) 206

do not increase in answering expertise over time [31]. In light of this, it is important to 207

understand how to attract attention to one’s questions in an effective manner and from 208

the true experts. This is especially true for questions about novel topics that have only 209

recently arisen, e.g., new APIs. 210

Anderson et al. set out to predict the long-term value of a question, as well as 211

whether a question has been sufficiently answered [32]. To accomplish the latter, they 212

attempt to predict whether or not a question will attain a bounty, which serves as an 213

indicator that the question was not yet adequately answered. Berger et al. studied 214

bounties and their effect on question performance compared to non-bountied 215

questions [33]. Though these works use the bounty as a measure of existing answer 216

quality, they do so in a different way than us, and to a different end. Here, we are 217

interested in determining whether or not the bounty system improves answer quality, 218

number of answers, or response time, controlling for the effect of new APIs in a question. 219

Data 220

In the following subsections, we describe our data and how it was collected, our strategy 221

for identifying and linking APIs to Stack Overflow questions, various statistics we 222

calculated for use in our models, and how we filtered our data to ensure model 223

robustness. 224

Data collection 225

Stack Exchange provides public data dumps periodically for all the sites within the 226

Stack Exchange network, including Stack Overflow. We use data from the Stack 227

Overflow data dump dated March 16, 2015 (retrieved from 228

https://archive.org/details/stackexchange). From this data, we extracted a rich 229

set of variables, including question view count, user-defined question tags, question and 230

answer scores, and question asker and answerer reputations. In addition, we calculated 231

a large set of variables based on this data including number of words in the body of a 232

post, amount of code in a post, question title length, and question asker and answerer 233

“wisdom” scores (explained below). A full list of collected variables used in our models 234

can be found in Table 1. Note that Table 1 also contains data gathered from other 235

sources, described below. 236

In addition to Stack Overflow related data, we developed and used a metric that 237

requires API call counts from real Android applications. To serve this purpose, we 238

wrote a custom crawler to download free applications from the official Google Play app 239

store (https://play.google.com). The crawler operates by “clicking” each link on the 240

front-page of the Google Play store, recursively “clicking” links on successive pages until 241

all links have been exhausted. Note that this search is not entirely random, but 242

attempts to emulate a random search through the space of applications. This 243

pseudo-random search is necessary as there is no simple method of extracting a random 244

application from the Google Play store. This crawler downloaded a total of 20, 014 245

applications. We then converted the apps to a more human-readable byte code format 246

using APKTool [34]. We processed the extracted byte code files by counting function 247

PLOS 6/28

https://archive.org/details/stackexchange
https://play.google.com

Table 1. Model variable descriptions.

Variable name Description

F.QQualityLabelGood Label for question quality.
TimeToBounty Time to bounty start (days). Equal to 0 for questions that never receive a bounty.
TimeToAnswerMins Time to answer, in minutes.
QCreationDate Number of days between the first Stack Overflow post (ever) and the question creation date.
QOwnerNQ Total number of questions created by the question owner.
Q/AOwnerReputation Reputation for the post owner.
QOwnerAge Number of days between question owner’s account creation and the question creation date.
Q/AMEC Mean Expertise Contribution (MEC) for the post owner.
QTitleLength Title length for the question.
QNTags Number of tags for the question.
Q/ABodyNWords Number of words in the post body, not including code.
Q/ABodyCharsOfCode Number of characters of code in the post body, including both code blocks and inline code segments.
Q/ANSwitches Number of structural changes in the post body.
Q/ABodyURLCount Number of URLs in the post body.
QNComments Number of comments for the question.
QNeed Calculated question documentation need, scaled.
F.Bounty A factor indicating whether or not the first good answer was provided during a bounty period.
F.Added A factor indicating whether or not the question references a newly added API.
APIDiffTime Minimum number of days from which a linked API was changed for all linked APIs in the question.

If a new API is present, this is the number of days since the new API was added.
All numeric explanatory variables are logged, except APIDiffTime, TimeToBounty, and QNeed.

invocations (invoke-virtual, invoke-super,invoke-direct,invoke-static and 248

invoke-interface). 249

We also gathered documentation data from Android source code by running Javadoc 250

with a custom Doclet [35]. This allowed us to gather data such as class documentation 251

line counts, number of inner classes (e.g., Animator.AnimatorListener), and average 252

method documentation lines. 253

Android change data 254

To collect API change data, we use the official Android change lists provided by the 255

Android SDK manager. However, some of these change lists are incomplete. For 256

example, according to the documentation website, the class 257

android.accounts.AccountManager was added in API level 5. However, the change list 258

packaged with the SDK release has no mention of this class (change list can be viewed 259

here: https://goo.gl/I4tsPl). For APIs with this issue, we assume that the API was 260

added in API level 1. In this work, we identify an API as “new” if it has not 261

been modified between the time of its introduction and the time the 262

question is asked. We note that it is likely clearer to classify new APIs as those that 263

were added only in the most recent framework change. However, there are a number of 264

reasons we do not define new APIs in this manner. Developer adoption of new 265

frameworks can be relatively slow for existing applications, as updating to the newest 266

framework versions may involve risk. Although the Android framework claims strict 267

backwards compatibility for their APIs, and rarely remove APIs outright, there is 268

always an inherent risk of breaking the current code base with any underlying 269

framework update. In addition, there are periods of time in which new Android 270

frameworks are released very rapidly; for example, API levels 2− 7 all released within 271

the same year. If we define new APIs as those newly introduced in the latest update, we 272

PLOS 7/28

https://goo.gl/I4tsPl

are severely limiting our data for a number of time points, as there is very little time for 273

new APIs to be discussed. Thus, in order to have enough data to reliably model, we 274

define a new API as described in bold above. 275

Stack Overflow question API links 276

To identify questions discussing relevant APIs, we examine the body of Stack Overflow 277

questions to extract links to APIs. The link types considered here are: 278

1. Tag links: A class name match occurring in the tags section of a Stack Overflow 279

question. 280

2. Href markup links: A class name match enclosed by HTML <a> tags, 281

referring back to the Android documentation site. 282

3. Title links: A class name match occurring in the title of the Stack Overflow 283

question. 284

4. Code links: A class name match exactly occurring within HTML <code></code> 285

segments – this means large code blocks (i.e., those contained within 286

<pre><code>...</code></pre> tags) are not considered when identifying API 287

links (Fig 1, “inline code segment”). Large code blocks were not considered in API 288

linking as they create large numbers of false positive links when users post long 289

code segments to show how they have tried to solve their problem in question. 290

Fig 1. A question and answer on Stack Overflow. Some relevant variables are
outlined in red.

This is a similar strategy as that used in prior work [3, 12], with some alterations. 291

These alterations were made to focus on identifying true positive links, while minimizing 292

false positives. For our models to be useful in answering our research questions, we 293

believe it is more important to make sure our data set includes only properly linked 294

APIs than to cover all questions referencing APIs; hence the emphasis on true positives. 295

In addition, we consider an API as a particular class mention, e.g., android.app.Activity, 296

rather than by method mention, e.g., android.app.Activity.onCreate(). This is due to the 297

fact that method names are often more generic than class names, e.g., a method named 298

start() may belong to many classes. When determining links, searches for both fully 299

qualified class names (e.g., android.app.Activity) were considered along with class names 300

alone (e.g., Activity). 301

We note that there are other approaches to extract API links from Stack Overflow 302

posts, as done by Rigby and Robillard [36]. However, we could not find an existing open 303

implementation of their tool to apply to our work. In addition, their work relies on an 304

island parser; open and usable island parsers for general code are difficult to come by 305

and, by our experience, often prone to error (due to the difficulty of the island parsing 306

task). Thus, due to the lack of reliable open implementations, we use the strategy as 307

outlined above. 308

In order to provide an estimate for the precision and recall of our linking strategy, 309

we performed two manual case studies on separate sets of 50 randomly selected 310

questions. The first set consists of questions that were detected by our linking strategy, 311

used to estimate precision. This set was also used for our case study on new API 312

interest in Stack Overflow, described in a later section of this work. Among this set, we 313

report an estimated precision of 96% (48/50). 314

The second set consists of questions manually identified by the authors of this work 315

as being “explicitly about” or “involving” an API (the criteria for these classifications 316

PLOS 8/28

are described in the aforementioned manual case study, described below), used to 317

estimate recall. We then ran our linking strategy on these questions, which correctly 318

identified 30 links; a recall of 60% (30/50). This relatively low recall is expected, as we 319

specifically designed our linking strategy to emphasize precision (true positives), as 320

described above, knowing this would affect our recall. 321

Combining documentation, API linked posts, and usage data 322

As described above, we have data from a multitude of sources: Stack Overflow questions 323

and answers linked to APIs, documentation metrics for each Android API level, and 324

function invocations in real applications. To combine these data sources for use in our 325

models, we performed a number of steps. 326

As our models are at the post level (i.e., question or answer), we must aggregate 327

data per post. For documentation metrics, e.g., number of documentation lines for a 328

linked class, we discover the most recently released API level given the post’s creation 329

date, and attach the corresponding documentation metric. In contrast, for function 330

invocation data, we do not discern between API levels. We note that a more accurate 331

approach would be to aggregate function call counts for each application’s target API 332

level, and attach that data to the linked post’s discovered API level (i.e., the latest API 333

level as of posting). However, this would require us to gather applications that target 334

many more API levels. As the Google Play store does not give access to older versions 335

of applications, we do not have enough data to discern between API levels for function 336

invocations. 337

In summary, we calculate documentation metrics per API level, and aggregate 338

function invocation counts across all API levels. We then attach these metrics to a 339

given post based on the post’s linked API. All other variables used in our models (as 340

described in following subsections) are calculated at the post level (excluding residual 341

question need, which uses the same combining methodology described above). 342

Wisdom scores 343

As we are primarily interested in assessing the effect of new APIs on various outcomes 344

(e.g., response time), we must control for asker answerer expertise, which can also affect 345

our outcomes of interest. Thus, we require a metric to measure expertise within the 346

framework of Stack Overflow i.e., not necessarily purely technical expertise. There has 347

been much interest in measuring user expertise on Stack Overflow, with researchers 348

investigating multiple dimensions that contribute to expertise, along with applications 349

of measures [37–40]. However, most definitions of expertise are coarse-grained; e.g., 350

merely using reputation, or some simple function of reputation. Here, we leverage work 351

by Yang et al. [41]. They introduce a novel metric called Mean Expertise Contribution 352

(MEC), referred to as a “wisdom” score. In essence, this metric considers two 353

dimensions of user wisdom or expertise: the debatableness of a question, and the utility 354

of an answer. MEC is defined as: 355

MECu,t =
1

|Qu
t |

∑
∀qi∈Qu

t

AU(u, qi) ∗
D(qi)

Davg
t

where: 356

• Qu
t is the set of questions from user u on topic t. In this work, we consider only 357

one topic: Android (as defined by Stack Overflow question tags). 358

• AU(u, qi) is the utility of the answer provided by user u to question qi; 359

AU(u, qi) = 1
Rank(aqi

) i.e. the inverse rank of the answer provided by u for 360

PLOS 9/28

question qi. A rank of 1 indicates the highest scoring answer for a question post. 361

Thus, a larger AU indicates a higher expertise level shown by user u for question 362

qi. 363

• D(qi) is the debatableness of question qi, calculated as the number of answers 364

|Aqi | provided for question qi. 365

• Davg
t is the average debatableness of all questions related to topic t, calculated as 366

1
|Qt| ∗

∑
∀qj∈Qt

|Aqj | 367

A value of MECu,t = 1 indicates that user u, on average, provides the best answer to 368

averagely debated questions. MECu,t = 0.5 indicates that user u ranks second in 369

answering averagely debated questions, or ranks first in answering less debated 370

questions. We use this metric in our models. 371

We acknowledge that the MEC metric can summarize multiple phenomena with the 372

same value, which may be initially seen as a drawback. However, we chose this metric 373

precisely because of its summarizing capacity; specifically, its ability to balance the 374

influence of both user activity and contribution quality. As described by Wierzbicki et 375

al. [42], identifying expertise in community question and answering (CQA) systems is 376

difficult. Thus, novel approaches are necessary as, e.g., existing approaches (other than 377

MEC described here) often conflate activity with expertise. Though we acknowledge 378

that there are potential drawbacks of this metric, this metric is considered a 379

state-of-the-art approach for measuring user expertise. 380

Text-based variables 381

The Stack Overflow data dump includes the body of all posts including HTML markup 382

as displayed on the website. Using this data, we can extract variables in addition to 383

API links, including the number of words in a post, the amount of code in a post, and 384

specific information about the structure of the HTML used in the post. 385

To extract the amount of code in a post, we take care to differentiate between code 386

blocks and inline code segments, as shown in Fig 1. These two types have slightly 387

different HTML markup on Stack Overflow. We calculate both the lines of code and 388

total characters of code in both code blocks and inline code segments. 389

To extract word-based variables, we use JSoup (http://jsoup.org/) to remove 390

code blocks and send the resulting raw text (i.e., without HTML tags) to the Stanford 391

CoreNLP library [43] to tokenize and detect sentences. This way, our word-based 392

variables include inline code segments, but not code blocks. This is because inline code 393

segments are often used as part of a natural language sentence, and we believe they 394

should be treated as words. On the other hand, code blocks are purely formatted code, 395

which should not be analyzed as natural language text. Prior work also shows that 396

natural language text is just as important as code in a Stack Overflow question [44], 397

thus we must have some representation of language in our models. 398

Posters will often include links to documentation and related Stack Overflow 399

questions and answers. Thus, we extract the number of URLs in the body of the post, 400

the number of user-defined tags for the associated question, and the length of the title 401

of the associated question. 402

Finally, we calculate the number of switches between HTML tag types in the 403

base-level body of a post. This is a measure of structural complexity. We theorize that 404

the more switches between natural language text and code in a post, the more complex 405

the post is in terms of content. In addition, we believe that some structural information 406

should be included in the models as more structure can increase readability in terms of 407

visual clarity. To calculate this, we extract HTML tag sequences and count the number 408

PLOS 10/28

http://jsoup.org/

of switches between different tag types at the base-level. For example, if we see a 409

sequence of tags such as: 410

<a>... 411

<p>...</p> 412

<p>...</p> 413

<code>...</code> 414

<pre> 415

<code>...</code> 416

</pre> 417

we would count three structural switches: one switch from <a> to <p></p>, one 418

switch from the second <p></p> to <code></code>, and one switch from 419

<code></code> to <pre><code></code></pre>. The transition between the two <p> 420

tags is not counted as a switch, as these are the same tag type. Note that there is an 421

embedded <code> tag within the <pre> tag – as this is not at the base-level of the post 422

body, we do not count this as a switch. This also avoids double counting code blocks 423

which are visually a single unit, but could be considered two structural units if one does 424

not count the HTML tags in the aforementioned way. In Fig 1, the number of switches 425

for the answer would be equal to 2, even though there is an inline code segment in the 426

final paragraph. 427

Question and answer quality 428

As noted in Related work, our method of classifying question and answer quality is 429

drawn from work by Ravi et al. [18]. As stated, they define the quantity pi = si/vi, 430

where si is the score for question qi and vi is the view count; the normalization by the 431

view count acts as a control for popularity. They then argue for labeling questions with 432

pi = 0 as “bad”, and labeling questions with pi > 0.001 as “good”. 433

We argue that similarly for questions, answer quality should be a function of 434

associated view count and answer score. However, for answers, the use of view count is 435

slightly different as we only have access to view count at a question-level. Thus, it is 436

likely that some answers are viewed more than others, and that the view count variable 437

does not accurately reflect this. As a result, in all relevant models we control for the 438

time difference in question creation to answer creation. This serves as a control to 439

alleviate the bias that the view count variable has towards answers that are created 440

earlier. 441

Note that it may appear that a post decays in quality (pi) over time, as views 442

continue to increase in time. However, although more people view the post in time 443

(increasing vi; decreasing pi), these people also can up-vote the post (increasing si). If 444

we assume that people are equally likely to up-vote a post across time, then pi is still 445

valid; we believe this assumption holds true in practice, though there is no prior work 446

on exactly this phenomenon. We acknowledge that this underlying assumption may not 447

be true, and thus poses a threat to validity. 448

Residual question need for documentation 449

In previous work [12], we addressed the idea of Stack Overflow as a documentation
source, and built a model to predict the number of API linked Stack Overflow questions
using actual API usage in free Android applications and a number of controls. The

PLOS 11/28

model is of the form:

Number of API linked questions = β0+

β1Number of API calls in free apps + β2Source documentation lines +

β3Number of inner classes + β4Class documentation lines +

β5Average method documentation lines per class

where the βi are estimated model coefficients, fit on a sample of real Android 450

applications and associated documentation, combined in the same manner as described 451

in this work above. These variables were chosen through model selection and 452

identification based on hypotheses outlined in the mentioned work; we refer the reader 453

there for more in-depth information as to how these variables were selected and modeled. 454

As this model predicts the number of linked Stack Overflow questions per API, 455

where questions correspond to documentation, we view the negative of the residuals of 456

this model as representing documentation need (residual = observed value - predicted 457

value). If the negative residual of the documentation need model is negative, our model 458

predicts a lower amount of documentation than exists on Stack Overflow, indicating 459

that the API is over-documented ; if the negative residual is positive, the API is 460

under-documented. We emphasize that the idea of using this metric is to represent API 461

documentation need as a function of API usage in real applications, and a number of 462

controls. The theory behind this is that, generally speaking, with more knowledge 463

seekers there is an increased probability of nuanced, specific questions, as the general 464

usage questions have already been answered and thus are less likely to turn up again. 465

As a result, an API that is used more will likely require more documentation to satisfy 466

users’ needs than one that is used less. This also provides another metric for the 467

currentness of Stack Overflow. If Stack Overflow is very current, i.e. up-to-date in 468

terms of API documentation, then documentation need for APIs will generally be low. 469

This metric is taken into consideration along with analysis of new APIs to measure 470

currentness. We acknowledge that the theory above is one possible explanation of many 471

for this phenomenon. However, our definition of documentation need comes directly 472

from the definition of the residuals; if one believes that the model outcome represents 473

documentation, then the residual represents documentation need. 474

Data filtering 475

Posts that are older than one year that meet a certain set of criteria are deleted from 476

Stack Overflow and the underlying data dump [45]. Note that the data we use and the 477

resulting metrics calculated based on the data are from the snapshot date, e.g., 478

reputation for users is calculated as of the date of the snapshot, not the date of the 479

posting. This is due to the way that Stack Overflow structures its data dump. To 480

address this, we only consider questions and answers created before March 16, 2014 (1 481

year prior to the dump date) to avoid issues of sample bias in our models. Note that 482

this should not significantly affect the interpretation of reputation, which we use as of 483

the snapshot date. The point of only considering posts that were created before March 484

16, 2014 is to avoid posts that may be soon deleted. Automatically deleted posts have 485

low score by definition, and also cause very small changes to reputation (if any), due to 486

the criteria by which posts are deleted. Our models aggregate over many individuals 487

and questions and answers, so small reputation discrepancies should not matter in the 488

aggregate. 489

We primarily use two supplied tables from the Stack Overflow data dump: the Posts 490

and Votes tables. The Posts table contains the posts themselves along with 491

meta-information. The Votes table contains each vote (e.g., up, down, flagged as 492

inappropriate, etc.) for each post. There are a number of consistency issues with these 493

PLOS 12/28

two tables that must be addressed before they are used in our models. 494

Posts which are deleted are not contained in the dumped Posts table. However, 495

votes for these posts are sometimes not deleted from the Votes table. Additionally, if a 496

post is migrated from Stack Overflow to somewhere else in the Stack Exchange network 497

and a bounty was started while the post was still on Stack Overflow, the Votes table 498

will contain an entry for the start of the bounty while it will not contain an entry for 499

the end of the bounty. As a result, we only look at question threads which have not 500

been migrated or deleted as of the data dump. There are a number of observed 501

discrepancies in the Stack Overflow data set, mostly arising due to deleted posts, 502

migrated posts, and related administrative actions. We made a best-effort attempt to 503

clean the data of these inconsistencies. These specific issues affect a vast minority of our 504

data points (< 1%) and should have a negligible effect on our outcomes. 505

For our models, we do not consider answers from users who have deleted their 506

accounts or answered without an account, as this causes their reputation scores to be 507

lost in the data. Similarly, we do not consider questions in which the question asker has 508

deleted their account or asked without an account. After filtering for all of these issues, 509

our data set reduces from 633, 659 Android-tagged questions to 410, 287 questions. The 510

final step in filtering is to consider only those questions which are positively linked to an 511

API, leaving us with 22, 366 questions for all models presented. 512

Methodology 513

To answer each of our research questions, we have separate models using various forms 514

of linear regression. This allows us to inspect the relationship between our response 515

(dependent variable) and our explanatory variables of interest (predictors or covariates, 516

e.g., documentation need), under the effect of various controls. 517

Model and variable selection 518

As our research questions are composed of three outcomes of interest (number of 519

answers, answer speed, and answer quality), we require at least 3 models – one for each 520

outcome. For examining the number of answers per question, we use a Poisson 521

generalized linear model (GLM), as is standard with count data [46]. For examining the 522

time to first good answer, we use ordinary least squares (OLS) regression with a logged 523

dependent variable. Though time can be considered a count variable, we tested model 524

fit between the OLS regression models and Poisson GLMs and found better fit with the 525

OLS models. Finally, for answer quality models, we use logistic regression with a binary 526

dependent label of “bad” or “good”, as discussed previously from the work by Ravi et 527

al. [18]. 528

In this work, all models except the model for answer quality are at the question level, 529

i.e., each observation is a question. For the answer quality model, each observation is an 530

answer. As a result, for our time-to-answer models, we model the time to first good 531

answer, where “good” is defined by answer quality label. We considered modeling at the 532

answer level for all models; however, this would lead to multiple observations of the 533

same question. Multiple observation can lead to high levels of correlation between 534

covariates, potentially negatively affecting model inference. Among methods able to 535

handle multiple observations are mixed-effects (or random effects) models. To test 536

whether or not a mixed-effects model is necessary compared to a fully fixed-effects 537

model (i.e., if a random effect for question ID is necessary), we compare the Akaike’s 538

Information Criterion (AIC) of the models with and without the corresponding random 539

effect [47]. In the end, we decided against mixed-effects models both by their 540

PLOS 13/28

comparison of AIC and according to the principle of parsimony [48]; if the more 541

complicated model is only marginally better, use the simpler model. 542

In addition, in order to observe the effect of the bounty on time to answer we 543

separate our time to answer models into two parts: one for answers that come within 2 544

days of the question being asked, and one for answers after 2 days. This is because 545

bounties can only be added 2 days after a question’s creation. Since most questions are 546

answered within 2 days (88%), these questions necessarily cannot have a bounty, 547

causing a very large skew in a combined model towards non-bountied questions. As a 548

result, we believe that combining these two models would cause the bounty factor to be 549

ineffective for inference, as the combined model is likely to be heavily biased towards 550

non-bountied questions; in other words, the model will likely mostly capture the 551

variance in non-bountied questions, as they are the vast majority of the data set. In 552

fact, when examining the residuals vs. fitted values plot for the combined model, there 553

is a comparatively poor fit for fitted values at and over 2 days. This can be seen in 554

Fig 2; the combined model’s diagnostic plot has a comparatively large dip in the smooth 555

line. Due to this poor fit for higher fitted values in the combined model, and the heavy 556

skew towards non-bountied questions in the data, we separate the two models to make 557

sure the bounty factor can be safely used for inference. 558

Fig 2. Residual vs. fitted value plots for combined and split time to answer
models (lowess smoothed).

We employ log transformations on predictor variables to stabilize the variance and 559

improve model fit when appropriate [49]. As explanatory variables are often highly 560

correlated, we consider the variance inflation factor (VIF) of the set of predictors and 561

compare against the recommended maximum of 5 to 10. All models presented have a 562

maximum VIF of 3. To determine whether explanatory variables should be kept or 563

removed, we compare models using likelihood ratio tests [50]. 564

Variable names and descriptions can be found in Table 1. Note that some variables 565

with a calculable answerer counterpart were computed, but not used in models due to 566

issues of multicollinearity. In addition, some other variables were computed but not 567

used due to issues of multicollinearity, e.g., number of lines of code in the post body. 568

Interpreting regression results 569

In ordinary least squares regression, R2 measures the percentage of variance captured 570

by a model. However, a low R2 alone does not mean that the model cannot be inferred 571

from [51–54]. We note relatively low R2 values in the time to answer models. The 572

phenomenon we are modeling is a difficult one to fully capture – most questions are 573

either answered very quickly, or reside in a very long tail; the range of values is large, 574

but is heavily concentrated towards lower values. The differences between values within 575

the heavy concentration is very small, and thus hard to model. We control for many 576

factors that we believed may contribute in describing the variance in time to answer, 577

guided by prior research. We also took great care to ensure that our models meet the 578

assumptions of OLS regression by performing standard model diagnostics, and thus are 579

still useful for inference, even if the R2 values may be considered low. It is important to 580

note, however, that a low R2 increases the uncertainty in predicted values, even if 581

p-values are low. For example, if one were to create a 95% confidence interval for 582

estimates of significant coefficients in a model that has a low R2, the intervals will be 583

larger when compared to a model with higher R2, even if the p-value of the coefficients 584

are the same. As we don’t use our models for prediction, this drawback of using a low 585

R2 model does not apply. However, it should be noted. 586

PLOS 14/28

Results 587

We begin our results by first examining a case study aimed at determining whether the 588

new APIs in linked Stack Overflow questions are an integral part of the question, or if 589

they are merely mentioned in passing. We then examine results for both our research 590

questions. 591

Case study: new API interest in Stack Overflow 592

One of our goals is to study the effect that newness of APIs mentioned in a question has 593

on answer timeliness and quality. The implicit assumption is that question askers on 594

Stack Overflow care about and use new APIs. For our models to be relevant, we must 595

justify this assumption. In other words, we must make sure that our API linking 596

strategy finds posts where the linked (new) API is an integral part of the discussion. 597

Manually inspecting all questions linked to new APIs is infeasible, as we have 22, 366 598

questions found by our linking strategy. Thus, we took a random sample of 50 questions 599

linked to new APIs and manually categorized them as “explicitly about”, “involving”, 600

or “not about” the linked new API. This categorization was performed independently 601

by both authors. When combining the “explicitly about” and “involving” categories, 602

this resulted in a 90% agreement rate; when keeping these groups separate, there was a 603

52% agreement rate. We note that although a 52% agreement rate may seem low, it is 604

not unexpected. There are three categories, corresponding to a random agreement rate 605

of 33%, and we argue that the task of identifying a question’s topic is difficult even for 606

humans. Table 2 contains a coding guide that describes these defined categories. 607

Table 2. Qualitative coding guide for questions about Android APIs.

Code Criteria

Explicitly About 1) The question directly references a particular API in the
Android framework.
2) The API is the core component of the question; i.e.,
confusion or curiosity regarding the API is explicitly stated,
and the question entirely revolves around this particular
API and, e.g., its usage or idiosyncrasies.

Involving 1) The question directly references a particular API in the
Android framework.
2) The API is explicitly a part of the question, but not
necessarily the core component; e.g., the referenced API is
relevant and necessary to describe the question, but the core
confusion or curiosity within the question revolves around
something other than the referenced API, e.g., a different
API, or a general concern regarding the Android framework,
not the referenced API specifically.

The “explicitly about” class is as its name: if the question is explicitly about the 608

new API, it is classed as such. An example of such a question is: 609

Question ID: 14620974, Linked API: SeekBar
Title: Seekbar increase value up to 100
I have a seek bar with max=25. What I want to do is when a user drags the seekbar to
max value and it is in a pressed state [...]

The “involving” class consists of questions that explicitly state the new API, but the 610

question does not address it directly. An example of such a question is: 611

PLOS 15/28

Question ID: 11485026, Linked API: SeekBar
Title: Seekbar creating EditTexts and then getting entries for further use
This code creates a seekbar and makes the seekbar create as many EditText fields as the
slider is at / remove ones that would be too much. This code is in OnActivityCreated [...]

As shown, the “involving” question above does explicitly mention the new API 612

(SeekBar), but it is not clear that the question is entirely about the new API itself. We 613

found that the difference between these two groups is often small, but still worth 614

separating. 615

The results of our case study are as follows. Only 2 linked questions in the sample 616

are not about the linked API. The two linked APIs in this case are 617

NetworkOnMainThreadException and ImageButton. In the case of the former, the 618

question is about the exception generated by the Android operating system itself, not 619

the exception class. We avoid most of these issues with Exception classes due to our 620

method of discovering APIs in questions, outlined in previous sections. For the latter, 621

the question asker provided an incorrect user-defined tag. 622

As 48 of the 50 questions (22 “involving”, 26 “explicitly about”) in the case study 623

are in either the “involving” or “explicitly about” groups, we have confidence that our 624

models can be used for inference. To assuage potential concern about the difference 625

between the “involving” and “explicitly about” groups, we sought to identify a control 626

that can be used to separate between the two groups. Fig 3 shows time (days) since 627

API addition for the new APIs referenced in the 50 case study questions per manually 628

classified group. The box plot shows that questions in the “explicitly about” group are 629

generally posed closer to the date of their referenced API’s addition than those 630

questions in the “involving” group. This indicates that the number of days since the 631

addition of a referenced API can be a useful control in dividing the “involving” from the 632

“explicitly about” subgroups within the group of questions referencing new APIs. We use 633

this control in all our models. 634

Fig 3. Time since API addition for 50 question case study, per manual
classification group (2-sided t-test p < 0.05; 2-sided Wilcoxon rank-sum
test p < 0.05).

This case study shows that Stack Overflow users indeed ask questions about new 635

APIs, and we can conclude that Stack Overflow users actually do use and care about 636

new APIs; in other words, the new APIs are not merely mentioned in passing within the 637

post. In addition, it provides confidence that our linking strategy indeed prioritizes true 638

positive links, as false positives are rare. Meeting these core assumptions allows us to 639

use the models we build for inference. 640

Count, latency, and quality of answers to new API questions 641

Number of answers to new API questions: Table 3 shows our model for the number of 642

answers per question. Column 1 serves as a base model; only controls for question 643

creation date and question-related expertise metrics are used. Column 2 adds 644

question-specific descriptive variables i.e., textual variables and user-defined tag count. 645

Column 3 introduces a variable that is not in control of the question asker 646

(QNComments), API-related variables (APIDiffTime, F.Added), and variables 647

related to the bounty (F.Bounty, TimeToBounty). 648

We see that high quality questions (F.QQualityLabelGood) receive more answers 649

(0.049). For text-based, non-code variables (QTitleLength, QBodyNWords, 650

QBodyURLCount), we see negative effects (−0.033,−0.054,−0.031). As these 651

variables serve as proxies for textual complexity, this is expected. Stack Overflow 652

PLOS 16/28

Table 3. Number of answers per question, Poisson GLM.

Coefficient Estimates:

(1) (2) (3)

QCreationDate −0.110∗∗∗ −0.100∗∗∗ −0.175∗∗∗

QOwnerNQ 0.022∗∗∗ 0.016∗∗ 0.012∗

QOwnerReputation 0.011∗∗ 0.012∗∗ 0.010∗

QOwnerAge −0.019∗∗∗ −0.016∗∗∗ −0.013∗∗∗

QMEC −0.015 −0.009 −0.006
QTitleLength −0.056∗∗∗ −0.033∗

QBodyNWords −0.048∗∗∗ −0.054∗∗∗

QBodyCharsOfCode 0.012∗∗∗ 0.007∗

QNSwitches −0.004 −0.014
QBodyURLCount −0.018 −0.031∗∗

F.QQualityLabelGood 0.083∗∗∗ 0.049∗∗∗

QNeed −0.018∗∗∗ −0.014∗∗∗

QNTags −0.018∗∗∗ −0.017∗∗∗

QNComments 0.150∗∗∗

F.Added 0.076∗∗∗

APIDiffTime −0.00005∗∗

F.Bounty 0.203∗∗∗

TimeToBounty 0.0003
Constant 1.305∗∗∗ 1.584∗∗∗ 2.075∗∗∗

Log Likelihood −32,400.610 −32,303.640 −31,589.460

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

emphasizes conciseness in question asking 653

(https://stackoverflow.com/help/how-to-ask); as these variables represent 654

question lengths, it is not surprising that longer questions receive fewer answers. We see 655

that questions linked to new APIs (F.Added) receive more answers (0.076), when 656

controlling for other relevant variables. This is a positive result for Stack Overflow – 657

new APIs are a topic of interest to developers, and one would hope that their needs for 658

the most current documentation is met. However, we see that questions with higher 659

documentation need (QNeed) receive less answers (−0.014). 660

Latency of answers to new API questions: Tables 4 and 5 show our models for time to 661

first good answer, for answers that come before and after 2 days. Column 1 serves as 662

the base model. Column 2 adds answer-related variables, such as answerer expertise and 663

answer text metrics. Column 3 adds question-related variables. 664

For questions with a first good answer within 2 days (Table 4), we see that questions 665

linked to new APIs receive slower answers (0.133). For questions with a first good 666

answer after 2 days (Table 5), we see that questions linked to new APIs receive faster 667

answers (−0.216). When comparing these two models, the situation seems contradictory 668

at first. 669

For the former case, the explanation could be that questions with new APIs are 670

harder to answer, and thus answers come slower. This is supported by the fact that 671

question text variables which serve as a proxy for complexity (e.g., QTitleLength, 672

QBodyNWords, QBodyURLCount) all have significant positive values. In 673

addition, our data shows that there are far fewer unique people who answer questions 674

that reference new APIs (2, 266) than those who answer questions that are not about 675

new APIs (7, 264) – this may be due to new APIs requiring specific knowledge that is 676

PLOS 17/28

https://stackoverflow.com/help/how-to-ask

Table 4. Time to first good answer models, log minutes, before 2 days.

Coefficient Estimates:

(1) (2) (3)

QCreationDate −0.553∗∗∗ −0.994∗∗∗ −1.070∗∗∗

QOwnerNQ −0.184∗∗∗ −0.158∗∗∗ −0.110∗∗∗

QOwnerReputation 0.050∗∗∗ 0.047∗∗∗ 0.012
QOwnerAge 0.044∗∗∗ 0.036∗∗∗ 0.039∗∗∗

QMEC 0.249∗∗∗ 0.229∗∗∗ 0.192∗∗∗

ABodyNWords 0.312∗∗∗ 0.262∗∗∗

ABodyCharsOfCode 0.056∗∗∗ 0.055∗∗∗

ANSwitches −0.042∗∗ −0.044∗∗

ABodyURLCount −0.008 −0.002
AMEC −1.693∗∗∗ −1.673∗∗∗

AOwnerReputation −0.139∗∗∗ −0.135∗∗∗

QNTags 0.071∗∗∗

QTitleLength 0.098∗∗∗

QBodyNWords 0.262∗∗∗

QBodyCharsOfCode 0.009
QNSwitches −0.030
QNComments 0.095∗∗∗

QBodyURLCount 0.192∗∗∗

F.QQualityLabelGood 0.181∗∗∗

QNeed 0.045∗∗∗

F.Added 0.133∗∗∗

APIDiffTime −0.0001∗∗

Constant 7.035∗∗∗ 9.939∗∗∗ 8.994∗∗∗

R2 0.032 0.133 0.164

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

not yet widespread. Thus, due to a lack of knowledgeable individuals, answers come 677

slower. 678

For the latter case, the explanation could be as follows. Questions with a first good 679

answer after 2 days are harder to answer; otherwise, they would likely have received a 680

faster answer (median time to first good answer in our data is 17 minutes). In addition, 681

our data shows that of questions that are answered only after 2 days (2, 525), only 46% 682

are answered within 1 month. This result is more nuanced than what has been 683

discussed in the past; questions that are hard enough to not receive an answer within 2 684

days often take longer than 1 month to answer – a far cry from the median answer time 685

of 17 minutes. However, users want to document new APIs – this is supported by prior 686

work that shows Android classes are highly documented, and generally done so 687

quickly [3]. Thus, for questions that already take longer to answer (answers take ≥ 2 688

days to arrive), questions referencing new APIs receive comparatively faster answers 689

(F.Added coefficient is −0.216). 690

For both time to answer models, we see that good quality questions take longer to 691

answer. This is initially puzzling; if a question is of high quality, should it not be easier 692

to answer? Recall that our metric for question quality is a function of question score. 693

The mechanism that drives higher scores is complex and has been discussed in length by 694

users (https://meta.stackexchange.com/q/130046/when-should-i-vote). 695

However, the general consensus is that a question should be upvoted when it is useful, 696

PLOS 18/28

https://meta.stackexchange.com/q/130046/when-should-i-vote

Table 5. Time to first good answer models, log minutes, after 2 days.

Coefficient Estimates:

(1) (2) (3)

QCreationDate −2.126∗∗∗ −2.125∗∗∗ −1.590∗∗∗

QOwnerNQ 0.059∗ 0.062∗ 0.091∗∗∗

QOwnerReputation −0.068∗∗ −0.023 −0.020
QOwnerAge 0.004 0.008 0.026
QMEC −0.349∗∗∗ −0.437∗∗∗ −0.358∗∗∗

ABodyNWords −0.008 0.028
ABodyCharsOfCode 0.002 0.00001
ANSwitches 0.012 0.032
ABodyURLCount 0.113∗ 0.090∗

AMEC 0.097 0.131
AOwnerReputation −0.147∗∗∗ −0.115∗∗∗

QNTags −0.060∗

QTitleLength −0.031
QBodyNWords −0.093
QBodyCharsOfCode −0.002
QNSwitches −0.068
QNComments 0.032
QBodyURLCount 0.023
F.QQualityLabelGood 0.377∗∗∗

QNeed 0.023
F.Added −0.216∗

APIDiffTime 0.0002∗∗

F.Bounty −1.240∗∗∗

TimeToBounty 0.011∗∗∗

Constant 26.115∗∗∗ 26.900∗∗∗ 23.176∗∗∗

R2 0.157 0.184 0.291

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

clear, and (or) shows research effort. It may be that an eminently useful question with 697

no immediately obvious solution takes longer to answer. To our knowledge, there is no 698

comprehensive (e.g., qualitative) work on the social reasoning behind high Stack 699

Overflow question scores. Thus, this explanation is one of a potential many; the 700

underlying social mechanism behind high scoring questions could be the subject of 701

future work. 702

For the first model (first good answer within 2 days), we see that questions with 703

higher need receive slower answers (0.045). For the second model (first good answer 704

within 2 days), QNeed is not significant, and is thus not considered. 705

Quality of answers to new API questions: Table 6 shows our model for answer quality. 706

Column 1 serves as the base model. Column 2 adds answer-related variables, and 707

column 3 adds question-related variables. 708

We see a positive effect of question quality, indicating that higher quality questions 709

receive higher quality answers, even when controlling for time to answer. This is in 710

agreement with prior work [55]. We see no effect of new APIs on answer quality. 711

However, we do see that documentation need has a positive effect on answer quality 712

(0.032), indicating that APIs with high documentation need are more likely to receive a 713

higher quality answer. 714

PLOS 19/28

Table 6. Answer quality models (bad, good), logistic regression.

Coefficient Estimates:

(1) (2) (3)

QCreationDate −0.509∗∗∗ −0.294∗∗∗ −0.163∗∗∗

TimeToAnswerMins −0.095∗∗∗ −0.064∗∗∗ −0.092∗∗∗

QOwnerNQ −0.050∗∗∗ −0.041∗∗∗ −0.001
QOwnerReputation 0.203∗∗∗ 0.176∗∗∗ 0.136∗∗∗

QOwnerAge 0.018∗∗∗ 0.024∗∗∗ 0.032∗∗∗

QMEC −0.114∗∗∗ −0.074∗∗∗ −0.068∗∗∗

ABodyNWords 0.150∗∗∗ 0.142∗∗∗

ABodyCharsOfCode 0.042∗∗∗ 0.048∗∗∗

ANSwitches 0.105∗∗∗ 0.107∗∗∗

ABodyURLCount 0.107∗∗∗ 0.075∗∗∗

AMEC 1.679∗∗∗ 1.638∗∗∗

AOwnerReputation 0.147∗∗∗ 0.138∗∗∗

QNTags 0.020∗∗

QTitleLength −0.106∗∗∗

QBodyNWords −0.085∗∗∗

QBodyCharsOfCode −0.018∗∗∗

QNSwitches 0.002
QNComments −0.088∗∗∗

QBodyURLCount −0.030
F.QQualityLabelGood 0.764∗∗∗

QNeed 0.032∗∗∗

F.Added −0.018
APIDiffTime 0.00003
F.Bounty 0.593∗∗∗

TimeToBounty 0.001
Constant 2.638∗∗∗ −1.350∗∗∗ −1.429∗∗∗

AUC 0.64 0.69 0.71

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

For significant text-based variables (QTitleLength, QBodyNWords, 715

QBodyCHarsOfCode), we see negative effects. This suggests that decreased 716

conciseness is associated with lower answer quality. 717

Research Answer 1: Questions referencing new APIs receive more answers. For
questions with a first good answer within 2 days, questions referencing new APIs
receive slower answers; for questions with a first good answer after 2 days, questions
referencing new APIs receive faster answers. We see no significant effect of new
APIs in identifying answer quality; however, APIs with higher documentation need
are more likely to receive a higher quality answer.

Count, latency, and quality of answers with a bounty 718

In regards to the bounty, we see net beneficial effects across the board. We see that 719

questions with a bounty receive more (0.203, Table 3) and faster (−1.240, Table 5) 720

answers, with higher quality (0.593, Table 6), all while controlling for the effects of new 721

APIs. 722

PLOS 20/28

Looking further at our time to first good answer model (Table 5), we see that the 723

bounty, with all other variables constant, decreases time to first good answer by a factor 724

of e−1.240 = 0.289, i.e., 71.1%. As shown in Fig 4, the bounty also has the effect of 725

flattening the long tail of answer times, with a larger density towards smaller values of 726

time. As discussed above, only 46% of questions without a good answer within 2 days 727

are answered within 1 month; flattening of the long tail helps combat this issue. The 728

stated goal of the bounty is to draw more attention to the bountied question – this is in 729

hopes that the question asker will receive help due to the added attention. Here, we see 730

that the bounty is effective in not only reducing the time to first good answer on 731

average, but also in reducing the tail weight of the distribution of answer times. Thus, 732

the bounty is a powerful tool in getting more, faster, and higher quality answers, even 733

when controlling for the presence of new APIs (excluding answers which come before 2 734

days, where the bounty factor is undefined). 735

Fig 4. Time to answer density for non-bountied and bountied questions.

We also tested the inclusion of bounty amount into the models to see if higher 736

reputation value bounties receive benefits compared to lower reputation value bounties 737

(not shown in tables). In all forms individually tested (raw numeric 50, 100, etc., scaled 738

numeric 1, 2, etc., factors for each raw value, and a binary factor of 50 vs. more than 739

50), there was no significant effect of bounty amount on any outcomes tested. 740

Research Answer 2: Questions with a bounty receive more, faster, and higher
quality answers than those without a bounty. We find no significant effect of bounty
amount on any outcomes tested, for any operationalization of bounty amount in
each model.

Discussion 741

Our results show that questions referencing new APIs receive more answers, when 742

controlling for other relevant variables, a net positive for Stack Overflow that strives to 743

provide timely, quality answers to questions. As stated by the Stack Overflow answering 744

guidelines (https://stackoverflow.com/help/how-to-answer), users are instructed 745

to “make sure your answer provides [the specific answer for a given question] – or a 746

viable alternative”. In manual inspection of questions and answers for new APIs, 747

answers often provide semi-orthogonal solutions to the same stated problem. When 748

solving programming tasks, there are often many methods of accomplishing the same 749

goal, and having multiple solutions provides a wider breadth of information and thus 750

understanding as to how a given API works. We find the same is true in the case of the 751

bounty; bounties increase the number of answers that a question receives, a beneficial 752

effect. Thus, we conclude the bounty incentive works as intended in attracting more 753

answers. 754

Our results also show that new API questions receive a slower first good answer, 755

given that the answer comes within 2 days. This is a potential point of concern for 756

Stack Overflow. Though the effect is relatively small in raw value (e0.133 = 1.142 or 757

14.2%), this may still be an issue if the question is asked, e.g., close to the end of a work 758

day, or if the solution is especially time critical. However, for new API questions which 759

receive a first good answer after 2 days, we see a hastening effect; good news for Stack 760

Overflow users. 761

In terms of documentation need, APIs in higher need receive higher quality answers 762

(0.032), though slower answers for those questions answered within 2 days (0.045). In 763

all, this is good news for Stack Overflow, as although answers may come slower for 764

under-documented APIs, the answers they do receive are of higher quality. 765

PLOS 21/28

https://stackoverflow.com/help/how-to-answer

In all cases, adding a bounty has a beneficial effect, increasing the number of 766

answers, decreasing time to first good answer, and increasing answer quality. 767

Interestingly, however, the bounty amount has no significant effect for any outcomes 768

tested, for any operationalization of bounty amount tried. We acknowledge that the lack 769

of a statistically significant operationalization does not necessarily equate to finding 770

evidence that the bounty amount does not matter. However, we are still interested in 771

discussing potential reasons behind this lack of significance, and do so below. 772

This lack of significance may elucidate an underlying phenomenon: Stack Overflow 773

answerers may not care much about being “paid” extra for their work, as long as they 774

are paid at all. Or, it could be that questions which receive a bounty are inherently 775

more difficult to answer – those who answer these questions may be more expert and 776

thus have more reputation to begin with, so the additional bounty payoff is negligible to 777

them. Another explanation could be that the payment provides little to no motivation, 778

and the increased benefits are due to the increased visibility the bounty provides. 779

Further studies, including interviews and surveys of Stack Overflow users, are needed to 780

distinguish among those alternatives. 781

If bounty visibility is the only reason that associated questions receive beneficial 782

effects, one may consider replacing the bounty with, e.g., a system that automatically 783

detects underserved questions and randomly places them into a special section for a 784

limited amount of time. However, Nisbett and Valins’ overly sufficient justification 785

hypothesis [56] seems to argue against this; expected external incentives (here, the 786

bounty reputation reward) can undermine intrinsic motivation for participation (e.g., 787

altruism), and when removed, can act against intrinsic motivation. On Stack Overflow, 788

this means that removing the bounty and replacing it with an equivalent system that 789

offers no reward may result in a negative response. Others have also discussed the 790

bounty incentive in their work [4, 25, 32] and lauded its effectiveness. To our knowledge, 791

we are the first to find that the bounty amount does not seem to matter for answer 792

quality, speed, and amount, while controlling for many relevant variables. 793

Our findings suggest that in practice, one can put a bounty on their question and 794

receive a large speed increase (71.1%), with the additional benefits of receiving more, 795

higher quality answers. As we found the reputation reward for the bounty does not seem 796

to matter, we believe putting up the minimal reward (50 reputation) is likely sufficient. 797

Threats to validity 798

In addition to threats outlined in above sections, we acknowledge a number of threats to 799

validity. First, our data is primarily from the Stack Overflow provided data dump. As 800

mentioned, we found a number of issues in the provided data (e.g., discrepancies when 801

posts are migrated between sections within the Stack Exchange network). As we found 802

these issues to affect a minority of our data (< 1%), we do not believe this is a large 803

threat. In addition, due to how the data dump is structured, it is expensive to calculate 804

reputation scores at the time each question or answer is initially posted, as this requires 805

calculating a cumulative sum for each user in our data across all their posts for all time. 806

As we have 22, 366 posts in our considered data, this calculation time is prohibitive. 807

Thus, we use reputation scores at the time of the dump. 808

As shown in Fig 4, there is a long tail of answer times. We perform a split regression 809

for our time to answer models for answers that come before and after 2 days; this may 810

be seen as a threat. However, to properly study the effects of the bounty (which can 811

only come 2 days after a question is asked), this split must be done, as it would be 812

inappropriate to group questions which are ineligible to attain a bounty with those that 813

are eligible. The fact that we do not further segment our regression beyond 2 days (e.g., 814

> 2 days and < 1 month) can also be seen as a threat. However, we log transform our 815

PLOS 22/28

answer time outcome variable in all models, which acts to reduce the effect of the long 816

tail on model fit. As a result, we do not believe these threats are debilitating. 817

In this work, we identify an API as “new” if it has not been modified between the 818

time of its introduction and the time the question is asked, for reasons described in 819

Data. We acknowledge that this is only one of many choices for this definition. For 820

example, we could define an API as new if it was added within some time t of a post 821

being made, and test varying values of t. Or, we could define an API as new if it has 822

only been added in the most recent framework update. Our choice has the drawback 823

that some APIs may be defined as “new” by our method that are old in raw value; if an 824

API was introduced in API level 1 and is not modified for all time, we would still 825

consider this API as new. To mitigate this threat, we include various time variables 826

(e.g., QCreationDate, APIDiffTime) designed to absorb the variance introduced by 827

these old (in raw time) APIs, and thus do not believe this threat affects our results 828

significantly. 829

Though documentation metrics are split by API level and attached to posts based 830

on time, we do not split function invocation counts by API level; they are aggregated 831

across all levels. To split function invocation counts by API level would require far more 832

data from the Google Play store, and may not be possible due to the fact that 833

application developers often update their products to target newer APIs to, e.g., remain 834

up-to-date with the current trends [57, 58]. The Google Play store does not grant access 835

to historical versions of applications. Thus, we cannot reliably gather enough data for 836

function invocation counts per API level. 837

We note that our measure of “structural complexity” through counting HTML tag 838

switches is not supported by prior work. We hypothesized its importance based on 839

theories of language complexity used by, e.g., Kincaid et al. [59]. Due to this initial 840

hypothesis, we had to include it in our final models to retain inferential power (i.e., we 841

do not want to data peek; we do not want to remove a variable that we initially 842

hypothesized as important after we found out it is not significant – this would be a 843

disaster for inferential robustness). Though this may be seen as a threat, this variable 844

was not significant in any of our models, and thus we do not interpret it in any 845

discussions. It is possible that the inclusion of this variable may cause issues in 846

estimation due to, e.g., multicollinearity. However, we take extreme care to make our 847

models robust for inference, including reducing multicollinearity as much as possible, as 848

described in Methodology. As a result, we do not believe the inclusion of this variable 849

negatively affects our findings. 850

Conclusion 851

In this work, we studied Stack Overflow questions referencing new APIs, which we know 852

have longer latency to an acceptable answer. Specifically, we sought to elucidate the 853

factors affecting answer count, their latency, and their quality when the questions refer 854

to new Android APIs. 855

Overall, we found that questions referencing new APIs receive more answers, after 856

controlling for confounds, but there are subtleties in this overall result. Namely, among 857

questions with a first good answer within 2 days, those referencing new APIs receive 858

slower answers. On the other hand, among questions with a first good answer after 2 859

days, questions referencing new APIs receive faster answers. We see no significant effect 860

of new APIs in identifying answer quality, but APIs with higher documentation need 861

are more likely to receive a higher quality answer. 862

Questions with a bounty receive benefits across all variables of interest, though 863

bounties can only be placed after 2 days. Based on these findings, we discussed what a 864

question asker can do to receive benefits for our outcomes. In general, adding a bounty 865

PLOS 23/28

is the most efficient way to receive more, faster, and higher quality answers. However, 866

the bounty reputation value does not appear to be significant in any context. We 867

hypothesized potential reasons behind this insignificance. Due to the complexity of the 868

bounty system and its introduction of many overlapping confounds, to our knowledge 869

there is no prior work on the exact mechanism behind the bounty’s effectiveness, and 870

why the amount is insignificant when controlling for confounds. This could be the 871

subject of future work. 872

To our knowledge this is the first study that specifically focuses on questions 873

referencing new APIs, and we use a novel metric to determine documentation need. 874

These two points provide different descriptions of Stack Overflow’s ability to maintain 875

currentness in terms of API documentation. In addition, we believe we are the first to 876

find that the bounty amount does not seem to matter when controlling for many 877

relevant confounds. We have identified both shortcomings and places where Stack 878

Overflow excels in terms of maintaining currentness, and show that the bounty indeed 879

accomplishes its intended effect. We hope our findings motivate others to identify and 880

provide solutions for potential deficiencies in Stack Overflow, positively affecting 881

software development as a whole. 882

Acknowledgments 883

We acknowledge Premkumar Devanbu for helpful discussions on the direction of this 884

work. We are also grateful to DECAL lab members for their patience and insights 885

during various conversations about this project. 886

References

1. Vasilescu B, Serebrenik A, Devanbu P, Filkov V. How social Q&A sites are
changing knowledge sharing in open source software communities. In:
Proceedings of the 17th ACM conference on Computer supported cooperative
work & social computing. ACM; 2014. p. 342–354.

2. Treude C, Barzilay O, Storey MA. How do programmers ask and answer
questions on the web?: Nier track. In: Software Engineering (ICSE), 2011 33rd
International Conference on. IEEE; 2011. p. 804–807.

3. Parnin C, Treude C, Grammel L, Storey MA. Crowd documentation: Exploring
the coverage and the dynamics of API discussions on Stack Overflow. Georgia
Institute of Technology, Tech Rep. 2012;.

4. Ponzanelli L, Mocci A, Bacchelli A, Lanza M, Fullerton D. Improving low quality
stack overflow post detection. In: 2014 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE; 2014. p. 541–544.

5. Dalip DH, Gonçalves MA, Cristo M, Calado P. Exploiting user feedback to learn
to rank answers in q&a forums: a case study with stack overflow. In: Proceedings
of the 36th international ACM SIGIR conference on Research and development in
information retrieval. ACM; 2013. p. 543–552.

6. Treude C, Figueira Filho F, Cleary B, Storey MA. Programming in a socially
networked world: the evolution of the social programmer. The Future of
Collaborative Software Development. 2012; p. 1–3.

PLOS 24/28

7. Begel A, Bosch J, Storey MA. Social networking meets software development:
Perspectives from github, msdn, stack exchange, and topcoder. IEEE Software.
2013;30(1):52–66.

8. Barua A, Thomas SW, Hassan AE. What are developers talking about? an
analysis of topics and trends in stack overflow. Empirical Software Engineering.
2014;19(3):619–654.

9. Campos EC, de Souza LB, Maia MdA. Nuggets Miner: Assisting Developers by
Harnessing the Stack Overflow Crowd Knowledge and the GitHub Traceability.
Proc CBSoft-Tool Session. 2014;.

10. Ponzanelli L, Bavota G, Di Penta M, Oliveto R, Lanza M. Mining Stack Overflow
to turn the IDE into a self-confident programming prompter. In: Proceedings of
the 11th Working Conference on Mining Software Repositories. ACM; 2014. p.
102–111.

11. Parnin C, Treude C. Measuring API documentation on the web. In: Proceedings
of the 2nd international workshop on Web 2.0 for software engineering. ACM;
2011. p. 25–30.

12. Kavaler D, Posnett D, Gibler C, Chen H, Devanbu P, Filkov V. Using and asking:
APIs used in the android market and asked about in Stack Overflow. In: Social
Informatics. Springer; 2013. p. 405–418.

13. Jiau HC, Yang FP. Facing up to the inequality of crowdsourced API
documentation. ACM SIGSOFT Software Engineering Notes. 2012;37(1):1–9.

14. Baltadzhieva A, Chrupa la G. Question Quality in Community Question
Answering Forums: a survey. ACM SIGKDD Explorations Newsletter.
2015;17(1):8–13.

15. Tian Q, Zhang P, Li B. Towards Predicting the Best Answers in
Community-based Question-Answering Services. In: ICWSM; 2013.

16. Shah C, Pomerantz J. Evaluating and predicting answer quality in community
QA. In: Proceedings of the 33rd international ACM SIGIR conference on
Research and development in information retrieval. ACM; 2010. p. 411–418.

17. Gantayat N, Dhoolia P, Padhye R, Mani S, Sinha VS. The synergy between
voting and acceptance of answers on Stack Overflow, or the lack thereof. In:
Proceedings of the 12th Working Conference on Mining Software Repositories.
IEEE Press; 2015. p. 406–409.

18. Ravi S, Pang B, Rastogi V, Kumar R. Great Question! Question Quality in
Community Q&A. ICWSM. 2014;14:426–435.

19. Chua AY, Banerjee S. So fast so good: An analysis of answer quality and answer
speed in community Question-answering sites. Journal of the American Society
for Information Science and Technology. 2013;64(10):2058–2068.

20. Bhat V, Gokhale A, Jadhav R, Pudipeddi J, Akoglu L. Min(e)d your tags:
Analysis of question response time in Stack Overflow. In: Advances in Social
Networks Analysis and Mining (ASONAM), 2014 IEEE/ACM International
Conference on. IEEE; 2014. p. 328–335.

PLOS 25/28

21. Goderie J, Georgsson BM, van Graafeiland B, Bacchelli A. Eta: Estimated time
of answer predicting response time in Stack Overflow. In: Mining Software
Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on. IEEE; 2015.
p. 414–417.

22. Linares-Vásquez M, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D. How do
api changes trigger stack overflow discussions? a study on the android sdk. In:
proceedings of the 22nd International Conference on Program Comprehension.
ACM; 2014. p. 83–94.

23. Cavusoglu H, Li Z, Huang KW. Can gamification motivate voluntary
contributions?: the case of Stack Overflow Q&A community. In: Proceedings of
the 18th ACM Conference Companion on Computer Supported Cooperative
Work & Social Computing. ACM; 2015. p. 171–174.

24. Low JF, Svetinovic D. Data analysis of social community reputation: Good
questions vs. good answers. In: Industrial Engineering and Engineering
Management (IEEM), 2015 IEEE International Conference on. IEEE; 2015. p.
1193–1197.

25. Movshovitz-Attias D, Movshovitz-Attias Y, Steenkiste P, Faloutsos C. Analysis
of the reputation system and user contributions on a question answering website:
Stack Overflow. In: Advances in Social Networks Analysis and Mining
(ASONAM), 2013 IEEE/ACM International Conference on. IEEE; 2013. p.
886–893.

26. Grant S, Betts B. Encouraging user behaviour with achievements: an empirical
study. In: Mining Software Repositories (MSR), 2013 10th IEEE Working
Conference on. IEEE; 2013. p. 65–68.

27. Jin Y, Yang X, Kula RG, Choi E, Inoue K, Iida H. Quick trigger on stack
overflow: a study of gamification-influenced member tendencies. In: Proceedings
of the 12th Working Conference on Mining Software Repositories. IEEE Press;
2015. p. 434–437.

28. Bosu A, Corley CS, Heaton D, Chatterji D, Carver JC, Kraft NA. Building
reputation in Stack Overflow: an empirical investigation. In: Proceedings of the
10th Working Conference on Mining Software Repositories. IEEE Press; 2013. p.
89–92.

29. Slegers J. The decline of Stack Overflow. Hackernoon. 2015. Available from:
https://hackernoon.com/the-decline-of-stack-overflow-7cb69faa575d.

30. Slag R, de Waard M, Bacchelli A. One-day flies on Stack Overflow – why the vast
majority of Stack Overflow users only posts once. In: Mining Software
Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on. IEEE; 2015.
p. 458–461.

31. Posnett D, Warburg E, Devanbu P, Filkov V. Mining stack exchange: Expertise
is evident from initial contributions. In: Social Informatics (SocialInformatics),
2012 International Conference on. IEEE; 2012. p. 199–204.

32. Anderson A, Huttenlocher D, Kleinberg J, Leskovec J. Discovering value from
community activity on focused question answering sites: a case study of stack
overflow. In: Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM; 2012. p. 850–858.

PLOS 26/28

https://hackernoon.com/the-decline-of-stack-overflow-7cb69faa575d

33. Berger P, Hennig P, Bocklisch T, Herold T, Meinel C. A Journey of Bounty
Hunters: Analyzing the Influence of Reward Systems on Stack Overflow Question
Response Times. In: Web Intelligence (WI), 2016 IEEE/WIC/ACM International
Conference on. IEEE; 2016. p. 644–649.

34. APKTool. APKTool, a tool for reverse engineering Android APK files. APKTool.
2017. Available from: https://ibotpeaches.github.io/Apktool/.

35. Oracle. Doclet Overview. Javadoc. 2017. Available from: http://docs.oracle.
com/javase/1.5.0/docs/guide/javadoc/doclet/overview.html.

36. Rigby PC, Robillard MP. Discovering essential code elements in informal
documentation. In: Proceedings of the 2013 International Conference on Software
Engineering. IEEE Press; 2013. p. 832–841.

37. van Dijk D, Tsagkias M, de Rijke M. Early detection of topical expertise in
community question answering. In: Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM;
2015. p. 995–998.

38. Yang L, Qiu M, Gottipati S, Zhu F, Jiang J, Sun H, et al. Cqarank: jointly
model topics and expertise in community question answering. In: Proceedings of
the 22nd ACM international conference on Information & Knowledge
Management. ACM; 2013. p. 99–108.

39. Thongtanunam P, Kula RG, Cruz AE, Yoshida N, Ichikawa K, Iida H. Mining
history of gamification towards finding expertise in question and answering
communities: experience and practice with Stack Exchange. The Review of
Socionetwork Strategies. 2013;7(2):115–130.

40. Zhou G, Zhao J, He T, Wu W. An empirical study of topic-sensitive probabilistic
model for expert finding in question answer communities. Knowledge-Based
Systems. 2014;66:136–145.

41. Yang J, Tao K, Bozzon A, Houben GJ. Sparrows and owls: Characterisation of
expert behaviour in Stack Overflow. In: User Modeling, Adaptation, and
Personalization. Springer; 2014. p. 266–277.

42. Wierzbicki A, Brandes U, Schweitzer F, Pedreschi D. Advances in Network
Science: 12th International Conference and School, NetSci-X 2016, Wroclaw,
Poland, January 11-13, 2016, Proceedings. vol. 9564. Springer; 2016.

43. Manning CD, Surdeanu M, Bauer J, Finkel JR, Bethard S, McClosky D. The
Stanford CoreNLP Natural Language Processing Toolkit. In: ACL (System
Demonstrations); 2014. p. 55–60.

44. Nasehi SM, Sillito J, Maurer F, Burns C. What makes a good code example?: A
study of programming Q&A in Stack Overflow. In: Software Maintenance
(ICSM), 2012 28th IEEE International Conference on. IEEE; 2012. p. 25–34.

45. Stack Exchange Meta. Enable automatic deletion of old, unanswered zero-score
questions after a year. Stack Exchange. 2015. Available from:
http://meta.stackexchange.com/questions/78048.

46. Cameron AC, Trivedi PK. Regression analysis of count data. vol. 53. Cambridge
university press; 2013.

47. Bates DM. lme4: Mixed-effects modeling with R. Springer New York; 2010

PLOS 27/28

https://ibotpeaches.github.io/Apktool/
http://docs.oracle.com/javase/1.5.0/docs/guide/javadoc/doclet/overview.html
http://docs.oracle.com/javase/1.5.0/docs/guide/javadoc/doclet/overview.html
http://meta.stackexchange.com/questions/78048

48. Vandekerckhove J, Matzke D, Wagenmakers EJ. Model Comparison and the
Principle of Parsimony. The Oxford handbook of computational and
mathematical psychology. 2015; p. 300.

49. Cohen J, Cohen P, West SG, Aiken LS. Applied multiple regression/correlation
analysis for the behavioral sciences. Routledge; 2013.

50. Vuong QH. Likelihood ratio tests for model selection and non-nested hypotheses.
Econometrica: Journal of the Econometric Society. 1989; p. 307–333.

51. Schmidt FL, Hunter JE. Methods of meta-analysis: Correcting error and bias in
research findings. Sage publications; 2014.

52. Hu M. What does it mean to have a low R-squared? A warning about misleading
interpretation. Human Varieties. 2014. Available from:
http://humanvarieties.org/2014/03/31/.

53. Birnbaum P. On correlation, r, and r-squared. Sabermetrics Research. 2006.
Available from: http://blog.philbirnbaum.com/2006/08/
on-correlation-r-and-r-squared.html.

54. Birnbaum P. r-squared abuse. Sabermetrics Research. 2007. Available from:
http://blog.philbirnbaum.com/2007/10/r-squared-abuse.html.

55. Yao Y, Tong H, Xie T, Akoglu L, Xu F, Lu J. Want a good answer? ask a good
question first! arXiv preprint arXiv:13116876. 2013;.

56. Boggiano AK, Ruble DN. Competence and the overjustification effect: A
developmental study. Journal of Personality and Social Psychology.
1979;37(9):1462.

57. Lehman MM. Programs, life cycles, and laws of software evolution. Proceedings
of the IEEE. 1980;68(9):1060–1076.

58. Mens T. Introduction and roadmap: History and challenges of software evolution.
In: Software evolution. Springer; 2008. p. 1–11.

59. Kincaid JP, Fishburne Jr RP, Rogers RL, Chissom BS. Derivation of new
readability formulas (automated readability index, fog count and flesch reading
ease formula) for navy enlisted personnel. Naval Technical Training Command
Millington TN Research Branch; 1975.

PLOS 28/28

http://humanvarieties.org/2014/03/31/
http://blog.philbirnbaum.com/2006/08/on-correlation-r-and-r-squared.html
http://blog.philbirnbaum.com/2006/08/on-correlation-r-and-r-squared.html
http://blog.philbirnbaum.com/2007/10/r-squared-abuse.html

